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The perfectly matched layer (PML) recently formulated by Berenger for the ab-
sorption of radiated/scattered waves in computational electromagnetics is adapted
to computational acoustics, and its effectiveness as a nonreflecting boundary is ex-
amined. The excellent absorbing ability of the PML is demonstrated by its small
reflection coefficient for a plane wave incident on a plane interface. However, ad-
ditional frequency-domain and time-domain solutions show that the PML may not
be an appropriate computational boundary if the analyst is only interested in the
response of the radiator/scatterer and/or the acoustic field in the vicinity of the radi-
ator/scatterer. c© 1998 Academic Press

1. INTRODUCTION

In 1994, Berenger [1] presented, for the finite-difference, time-domain solution of
Maxwell’s equations in two dimensions, a new absorbing boundary, which he called a
perfectly matched layer (PML). His demonstration that the PML possesses extraordinary
energy-absorbing properties was verified by Katzet al. [2], who also extended the formu-
lation to three dimensions. Recently, Hu [3] formulated a PML for the linearized Euler
equations in two dimensions; similar energy-absorbing effectiveness was demonstrated.

A PML is described by governing equations produced through the introduction of artificial
attenuation into the governing equations for the enclosed medium. Thus, the domain of the
PML may be discretized in the same manner as that employed to discretize the enclosed
medium.

Here, the PML is examined for computational acoustics. First, the full 3D acoustic
formulation is constructed. Next, the reflection of plane waves at the unbounded flat interface
between a semi-infinite acoustic domain and a semi-infinite acoustic PML is investigated
in the frequency domain; similar reflection is examined when the PML has finite thickness.
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Then, the effectiveness of the acoustic PML for a bounded interface is investigated by
comparing PML and exact impedance curves for the dilatational motion of a spherical
surface. Finally, performance of the PML in time-domain calculations is examined for
normal impingement of a plane wave and for absorption of circular waves at the boundaries
of circular and rectangular domains.

2. ACOUSTIC PML

Because of the isomorphism between acoustic and electromagnetic wave propagation [4],
the adaptation of Berenger’s electromagnetics formulation to acoustics is straightforward.
With fluid velocity u normalized to the speed of soundc, fluid pressurep to ρc2 (where
ρ is the mass density), and timet to l/c (wherel is a characteristic length measure), the
nondimensional pressure–velocity equations of acoustics are

∂

∂t
u = −∇ p,

∂p

∂t
= −(∇ · u). (1)

Following Berenger [1], we expand pressure asp= px + py + pz and introduce the atten-
uation parametersqx, qy, qz to write the PML pressure–velocity equations in a Cartesian
reference frame as

∂ux

∂t
+ qxux = − ∂

∂x
(px + py + pz),

∂px

∂t
+ qx px = −∂ux

∂x
,

∂uy

∂t
+ qyuy = − ∂

∂y
(px + py + pz),

∂py

∂t
+ qy py = −∂uy

∂y
,

∂uz

∂t
+ qzuz = − ∂

∂z
(px + py + pz),

∂pz

∂t
+ qz pz = −∂uz

∂z
.

(2)

Note that, whileux, uy, anduz are the physical components of velocity,px, py, pz, qx,
qy, andqz have no physical meaning. Also, whenqx =qy=qz= 0, the three equations in
the left column of (2) reduce to the first of (1) and the sum of the three equations in the right
column reduce to the second of (1). Finally, in contrast to the case of three-dimensional
electromagnetic waves, where 12 equations are required to describe the PML [2], only six
equations are needed here for 3D acoustic waves; this, of course, is because pressure is a
scalar field.

3. FREQUENCY-DOMAIN ANALYSIS OF PLANE-WAVE REFLECTION

It is easily verified that the solutions to (2) for time-harmonic plane waves are of the
form

ψ = ψ0 exp[iω(γ · r − t)] exp [−(q · r)], (3)

wherer = ix+ j y+ kz is the position vector,γ= iγx + jγy+ kγz is the vector of direc-
tion cosines, and the attenuation vector isq= iqxγx + jqyγy+ kqzγz. The corresponding
solution from in an acoustic medium is, of course, (3) withq= 0.
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FIG. 1. Plane-wave reflection and transmission.

Let us examine an illuminating two-dimensional problem (Fig. 1). With noz-dependency,
Eqs. (2) simplify to

∂ux

∂t
+ qxux = − ∂

∂x
(px + py),

∂px

∂t
+ qx px = −∂ux

∂x
,

∂uy

∂t
+ qyuy = − ∂

∂y
(px + py),

∂py

∂t
+ qy py = −∂uy

∂y
.

(4)

Furthermore, withψ1(x, y) = ψinc(x, y)+ψrefl(x, y) as the generic solution on the left and
ψ2(x, y) = ψtrans(x, y) as that on the right, phase matching of the solutions (3) atx = 0
yields (Appendix A) (

1+ i

ω
qy1

)
sinφ1 =

(
1+ i

ω
qy2

)
sinφ2. (5)

In addition, with the pressure and velocity fields in each half-space expressed as (3),
continuity of pressure and normal velocity atx= 0 produces the reflection coefficient (Ap-
pendix A)

R0(ω) = cosφ1− cosφ2

cosφ1+ cosφ2
. (6)

For qy2=qy1, (5) yieldsφ2=φ1 and then (6) yieldsR0(ω)= 0. Thus, if Medium 1 is
acoustic and Medium 2 is an acoustic PML,qy2= 0 yields perfect phase matching and
complete energy absorption at the interface for any values ofφ1, ω, andqx2; this is impressive
performance.

For a semi-infinite acoustic medium (Medium 1) in contact with a PML of finite thickness
(Medium 2),qx1=qy1= 0 and Medium 2 extends only over the domain 0≤ x ≤ δ. Then,
for qy2=qy1= 0, Eqs. (4) become for Medium 2

∂ux

∂t
+ qxux = − ∂

∂x
(px + py),

∂px

∂t
+ qx px = −∂ux

∂x
,

∂uy

∂t
= − ∂

∂y
(px + py),

∂py

∂t
= −∂uy

∂y
.

(7)

It is readily found that the reflection coefficient at the interfacex= 0 is given for this problem
by (Appendix A)

R0(ω) = Rδ exp [−2(qx − iω)δ cosφ1], (8)
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whereRδ is the reflection coefficient atx= 1; Rδ = 1(Rδ =−1) corresponds to a fixed (free)
boundary atx= δ. This relation shows that, for waves with−π/2< φ1 < π/2, R0(ω)may
be made as small as desired by choosingqxδ as large as required. Thus, one can achieve
a desired level of attenuation with either a thin, highly attenuating layer or a thick, mildly
attenuating layer. Given the goal of minimizing computational cost, the former option is
generally to be preferred.

Unfortunately, a jump in attenuation across the medium interface may lead to spur-
ious reflections in discrete models [1]. Hence, it is useful to employ a variable attenuation
that increases steadily from zero as one moves away from the interface out through the
layer. In this case, the problem of the previous paragraph becomes one of wave propaga-
tion in an inhomogeneous medium for which the reflection coefficient may be determined
from the solution of a Riccati equation [5]. If the variable attenuation in (7) is taken as
qx(x)=qδxn, the Riccati equation reduces to a linear ordinary differential equation that
yields [1]

R0(ω) = Rδ exp

[
−2

(
qδ

n+ 1
− iω

)
δ cosφ1

]
. (9)

Thus, absorption performance remains high in PML’s with variable attenuation if
2qδδ cosφ1/(n+ 1) is made large.

Results for the special case of normal incidence may be obtained from (8) and (9)
by merely takingφ1= 0. For this situation, it is useful to examine the specific acoustic
impedancez0(ω)= p(0, y, ω)/ux(0, y, ω) of Medium 2. In all three cases above,z0(ω) is
given by

z0(ω) = 1+ R0(ω)

1− R0(ω)
. (10)

Thus, for |R0(ω)|¿1, z0(ω)≈ 1, which means that the dimensional specific acoustic
impedance is simplyρc.

4. FREQUENCY-DOMAIN ANALYSIS OF SPHERICAL-WAVE REFLECTION

The preceding analyses for an unbounded plane interface are not representative of actual
computational configurations. Perhaps the simplest representation of a bounded-interface
problem pertains to the radially symmetric radiation of acoustic waves by a spherical sur-
face undergoing dilatational motion (Fig. 2). Here, the domain inside the surface atr = 1
represents the radiator, and the acoustic and perfectly matched layers represent the un-
bounded acoustic fluid surrounding the radiator. The fidelity with which the two layers
represent the unbounded fluid is readily assessed by comparing approximate and exact
specific-acoustic-impedance curves [6] looking out from the spherical surfacer = 1.

For the PML of Fig. 2, the radially symmetric pressure–velocity equations (which pertain
to angle-invariant fields) are

∂ur

∂t
+ qur = −∂p

∂r
,

∂p

∂t
+ qp= − 1

r 2

∂

∂r
(r 2ur ). (11)

For simplicity, we takeq as constant; ifq = 0, (11) pertains to an acoustic medium, as it
must. A straightforward wave-propagation analysis yields for the reflection coefficient at
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FIG. 2. Acoustic and PML layers on a spherical surface.

r = 1 (Appendix A),

R1(ω) = −α · 2(q − iω)(1+ h)ω − iq(1− α)
2(q − iω)(1+ h)ω − iq(1− α) exp(i 2ωh), (12)

where, for a pressure-release surface atr = 1+ h+ δ,

α = exp [−2δ(q − iω)], (13)

and for a rigid surface atr = 1+ h+ δ,

α = (1+ h+ δ)(q − iω)+ 1

(1+ h+ δ)(q − iω)− 1
exp [−2δ(q − iω)]. (14)

For small reflection from the outer PML boundary(α ¿ 1), (qδ)2À 1; then (12) reduces
to

R1(ω) = −[1+ 2ω(1+ h)(i + ω/q)]−1 exp(i 2ωh), (15)

which is small only for 2ω(1+ h)À 1 and/or 2ω2(1+ h)/q À 1. For frequencies above
a specified lower bound, the former is accomplished with a sufficiently large acoustic layer
thickness and the latter is accomplished with a very large PML thickness and/or a small
attenuation coefficient. Asω→ 0, however,|R1(ω)| → 1 and the PML fails.

Greater insight is gained by examining the specific acoustic impedance looking out from
the surface of the radiator, i.e., atr = 1. It is readily shown that this impedance is given
by

z1(ω) ≡ η(ω)− iωµ(ω) =
[

1− R1(ω)

1+ R1(ω)
+ i

ω

]−1

, (16)

whereη(ω) = Re{z1(ω)} is the specific acoustic resistance andµ(ω) = −ω−1Im{z1(ω)} is
the specific acoustic inertia. For the infinite acoustic medium, these quantities are given
by η(ω)=ω2/(1 + ω2) and µ(ω)= 1/(1 + ω2) [6] so that (16) yields, as expected,
R1(ω) = 0. We observe thatη(ω) approaches zero asω → 0 and unity asω → ∞
and thatµ(ω) approaches zero asω→∞ and unity asω→ 0.
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FIG. 3. Specific acoustic resistance curves for the dilatational motion of a spherical surface (qδ = 6).

Specific acoustic resistance and inertia curves produced by (16) and (12) are compared
with their exact counterparts in Figs. 3 and 4 forqδ= 6 andh= 0, 1, 5, 30. We see that
agreement is poor forh= 0 and 1, marginal forh= 5, and satisfactory forh= 30. The curves
for h= 30 oscillate with small amplitude about the corresponding exact curves, which are
smooth. These results suggest that, although the PML is an excellent absorbing boundary
for plane-wave reflection at a plane boundary, it might be a poor impedance boundary for
more general geometries. A similar analysis has been carried out for radially symmetric
circular-wave reflection from a circular interface, with similar results. Hence, in both cases,
the PML requires the use of a thick acoustic layer to produce accurate impedance curves
for an unbounded acoustic domain.

5. TIME-DOMAIN ANALYSIS OF NORMAL PLANE-WAVE REFLECTION

Let us now consider normal incidence of a transient plane wave on an infinite plane
surface atx= 0 that separates a semi-infinite acoustic medium and a PML of thickness
δ with a constant attenuation parameterq. By direct substitution in the first of (4) with
qx = 0 in the acoustic medium andqx =q in the PML, it is readily shown that the pressure

FIG. 4. Specific acoustic inertia curves for the dilatational motion of a spherical surface (qδ = 6).
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and velocity fields have the forms

pa(x, t) = f (x − t)+ g(x + t), x ≤ 0,

ua(x, t) = f (x − t)− g(x + t), x ≤ 0,

pl (x, t) = e−qxF(x − t)+ eqxG(x + t), x ≥ 0,

ul (x, t) = e−qxF(x − t)− eqxG(x + t), x ≥ 0.

(17)

Enforcement of pressure and velocity continuity atx= 0 and specification of a rigid or free
boundary atx = δ yield

F(ζ ) = f (ζ ), g(ζ ) = G(ζ ), G(ζ ) = ±e−2qδ f (2δ − ζ ), (18)

where the plus (minus) pertains to a rigid (free) boundary. Thus, the pressure and velocity
fields for this problem are given by

pa(x, t) = f (x − t)± e−2qδ f (2δ − x − t), x ≤ 0,

ua(x, t) = f (x − t)∓ e−2qδ f (2δ − x − t), x ≤ 0,

pl (x, t) = e−qx f (x − t)± e−q(2δ−x) f (2δ − x − t), x ≥ 0,

ul (x, t) = e−qx f (x − t)∓ e−q(2δ−x) f (2δ − x − t), x ≥ 0.

(19)

These results are expected from the frequency-domain analysis of Section 3.
Equations (19) show that PML performance in the continuous system considered depends

upon the value of the productqδ, irrespective of the individual values ofq and δ. To
demonstrate that is not true for the corresponding discretized system, we consider finite-
difference calculations for a variable attenuationq=q(x)=qδ(x/δ)2 and a windowed-sine
pressure loading atx=−1 given byp(t)= d(t) sin 2π f t , whered(t)= 1 for 0< t < 1 and
d(t)= 0 otherwise; the frequency parameterf assumes the values 1, 5, and 10. A staggered
differencing scheme is used that constitutes a reduced version of the scheme described in
Appendix B. Computed velocity histories atx=−1 are presented in Fig. 5 forqδ = 50 and
δ= 0.1. The figure shows that significant reflection occurs for all three carrier frequencies;
note that the reflection forf = 10 is actually larger than that forf = 5. If qδ is reduced to
5 andδ increased to 1, thereby maintainingqδδ= 5, the same calculation exhibits visually
complete absorption. We used1x= 0.01 and1t = 0.005 in the computations for Fig. 5 to
ensure numerical stability and good resolution.

6. ABSORPTION OF A SOURCE-GENERATED TRANSIENT WAVE

IN TWO DIMENSIONS

In order to verify our implementation of the PML technique, we performed an acoustic
version of Berenger’s 1994 calculation [1]. Two separate computations were carried out us-
ing the finite-difference scheme outlined in Appendix B. One pertained to a 100× 50-cell
rectangular domain enclosed by a PML on all sides, and the other, a reference solution, per-
tained to a 380×380-cell square domain. A pulse excitation was applied at the geometrical
center of both domains. After nondimensionlization of Berenger’s electromagnetic-wave
formulation on the basis of the speed of light (3× 108 m/s) and the horizontal length of the
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FIG. 5. Velocity histories at the point of application of a windowed-sine pressure loading for three different
frequencies:f = 1, 5, 10 (plane waves;qδ = 50 andδ = 0.1).

100-cell side (1.5 m), the pulse in dimensionless form is given by

p(nx, ny) = (10− 15 cos 10π t + 6 cos 20π t − cos 30π t)/320 fort < 0.2,

p(nx, ny) = 0 for t > 0.2.
(20)

A plot of this pulse displays a characteristic period ofTc ≈ 0.2 and thus a characteris-
tic frequency of fc≈ 5. The loading points (nx, ny) are (50, 25) and (190, 190) for the
two computations. The dimensionless spatial and temporal increments are 0.01 and 0.005,
which correspond to Berenger’s spatial and temporal increments of 1.5 cm and 25 ps, res-
pectively. Free-boundary solutions, corresponding to acoustic pressure-release boundaries,
were obtained.

Two curves are presented in Fig. 6 for the relative error along the lower interface of the
acoustic and PML domains att = 2.5; this error is defined as

R(i ) = [ p(i, 1)− pr (i, 1)]/pr (50, 1)max, (21)

wherep(i, 1) is the pressure snapshot obtained with the 100× 50-cell domain enclosed by
the PML andpr (i, 1) is the corresponding reference snapshot obtained with the 380×380-
cell domain. The first curve (a) is obtained with a PML of linear spatial variation,q(z) =
qδ(z/δ), wherez is a local thickness coordinate andδ is the thickness of the PML; the other
curve (b) is obtained with a PML of parabolic spatial variationq(z)=qδ(z/δ)2, which is
the same PML used in our earlier calculations. In both cases, 10 PML cells corresponding
to qδ = 50 andδ= 0.1 are employed to enclose the 100× 50-cell computational domain.
Note that the linear PML performs slightly better than the parabolic PML for this pulse
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FIG. 6. Absorption of a pulse excitation by the PML technique shown as percentage relative errorR(i )
(t = 2.5, qδ = 50,δ = 0.1 andq(z) = qδ(z/δ)n) (a)n = 1; (b)n = 2.

excitation. However, both solutions demonstrate that the PML is very effective in this case.
The solution obtained here falls within the accuracy range achieved by Berenger with both
linear and parabolic PMLs (Figs. 9–11 in [1]).

7. TIME-DOMAIN ANALYSIS OF CIRCULAR-WAVE REFLECTION

To examine further PML performance in computational acoustics, time-domain finite-
difference computations for a two-dimensional, radially symmetric geometry are performed.
Here, we discretize the following governing equations in the PML betweenr = 1+ h and
r = 1+ h+ δ for the two-dimensional configuration of Fig. 2:

∂u

∂t
+ q(r )u = −∂p

∂r
,

∂p

∂t
+ q(r )p = −1

r

∂

∂r
(ru), (22)

where

q(r ) = qδ[r − (1+ h)]2/δ2. (23)

Corresponding governing equations for the acoustic medium betweenr = 1 andr = 1+h
are obtained by takingq(r ) = 0. A radially symmetric version of the finite-difference
scheme described in Appendix B is used.

In the computations that produced Figs. 7, 8, and 9,1r = 0.01, 1t = 0.005, and
qm = 50. Again, a windowed-sine pressure loading is the excitation. Significant reflections
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FIG. 7. Velocity histories atr = 1 for a windowed-sine radially symmetric pressure loading for three different
frequencies:f = 1, 5, 10 (circular waves;qδ = 50,h = 1, andδ = 0.1).

FIG. 8. Velocity histories atr = 1 for a windowed-sine radially symmetric pressure loading for three different
frequencies:f = 1, 5, 10 (circular waves;qδ = 50,h = 1, andδ = 2).
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FIG. 9. Velocity histories atr = 1 for a windowed-sine radially symmetric pressure loading for three different
frequencies:f = 1, 5, 10 (circular waves;qδ = 50,h = 5, andδ = 0.1).

are observed from the acoustic/PML interface in Figs. 7 and 8. It is interesting to note
that merely increasing the thickness of the PML does not achieve high absorption of a
low-frequency incident wave( f = 1) as it does for a plane incident wave. Thus, a PML
surrounding a relatively thin acoustic layer(h ∼ 1) cannot accurately represent the infinite
domain at low frequencies. Much improved velocity histories are obtained withh = 5, as
shown in Fig. 9, which agrees with the frequency-based behavior seen in Figs. 3 and 4.

Most time-domain calculations use a rectangular domain rather than a circular one. Thus,
we now consider circular waves that impinge on a square boundary (Fig. 10). Because of
symmetry, only a quarter of the domain need be considered. A two-dimensional staggered
scheme [7, 1] is used, the details of which are given in Appendix B. For windowed-sine
pressure loadings generated atr = 1, velocity histories onr = 1 at three different angular
locations,θ = 0◦, 22.5◦, and 45◦, are shown in Figs. 11, 12, and 13 forf = 1, 5, and 10,
respectively. In these calculations, we usedq(z) = 50(z/δ)2 andh = 4, where the PML
thicknessδ is 0.1 andz is a local thickness coordinate. Note thath = 4 approximately cor-
responds to the same area of acoustic medium characterizing the case of circular symmetry
with h = 5. Before reflection takes place, differences in velocity histories for the three
different angles are seen to be very small, which validates the use of a stepped boundary to
represent the quarter circle. From the results, it is seen that the amplitude of the reflected
signal decreases with increasing carrier frequency. However, the amplitude of the reflected
signal for a given carrier frequency is larger than that of its counterpart in the case of radial
symmetry.

Now the results shown in Figs. 7–9 and 11–13 are not directly comparable to those
appearing in Fig. 6, inasmuch as the former pertain to the normal-velocity field on a radiator’s



         
P1: SYJ/MSZ P2: SAG

January 12, 1998 14:32 APJ/Journal of Computational Physics jcp5868

PERFECTLY MATCHED LAYER 177

FIG. 10. Computational domain for two-dimensional finite-difference computations with a PML.

FIG. 11. Velocity histories onr = 1 atθ = 0◦, 22.5◦, and 45◦ for a windowed-sine pressure loading (square
boundary;h = 4, qδ = 50,δ = 0.5, and f = 1).
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FIG. 12. Velocity histories onr = 1 atθ = 0◦, 22.5◦, and 45◦ for a windowed-sine pressure loading (square
boundary;h = 4, qδ = 50,δ = 0.5, and f = 5).

FIG. 13. Velocity histories onr = 1 atθ = 0◦, 22.5◦, and 45◦ for a windowed-sine pressure loading (square
boundary;h = 4, qδ = 50,δ = 0.5, and f = 10).
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surface and the latter pertain to the pressure field at an acoustic-PML interface. However,
the results in Fig. 6 indicate high absorption of the radiated wave, whereas those in Figs. 7–9
and 11–13 indicate low absorption. The discrepancy is due to the vast difference between the
ratios of the acoustic-layer’s characteristic thickness to the radiator’s characteristic radius.
In the problem associated with Fig. 6, the radiator’s characteristic radius is roughly one-half
of a cell width and the acoustic-layer’s characteristic thickness is 25 to 50 cell widths, so
that the thickness to radius ratio lies between 50 and 100. In the problem associated with
Figs. 7–9 and 11–13, the corresponding ratios range from 1 to 6. Thus, as demonstrated in
Figs. 3 and 4, increasing the thickness of the acoustic layer until it is much larger than the
characteristic radius of the radiator greatly improves PML performance.

8. CONCLUSION

The performance of the perfectly matched layer (PML), first formulated by Berenger for
the time-domain, finite-difference solution of Maxwell’s equations, has been evaluated for
computational acoustics. It is shown that, while the PML constitutes an excellent absorbing
boundary for plane waves incident upon a planar interface, its performance in nonplanar
geometries is not always satisfactory.

A PML is surely effective in nonplanar geometries when(qδδ)2À 1 (whereδ ∼ 1) and
hÀ 1. It can also be effective with smallerh in the case of short acoustic wavelengths, i.e.,
for f À 1 (Figs. 3, 4, 8, and 13); in this circumstance,δ ¿ 1 sometimes works satisfactorily
(Fig. 7), although a largerδ is better (Fig. 8).

The PMLcannot work well in nonplanar geometries for h< 1 and f< 1 because the
radiated/scattered near field at intermediate and low frequencies is not purely radiative. In
Figs. 3 and 4, the specific acoustic impedance presented by the PML forh = 0 is purely
resistive, whereas the impedance for the infinite acoustic domain is both resistive and inertial
over the range 0.1 ≤ ω ≤ 10; for ω ≤ 0.1 the impedance is almost purely inertial. The
combination of a PML-encased acoustic layer withh = 1 produces a more representative
impedance, but an acoustic layer withh > 5 is required to achieve an accurate impedance
over the range 0.1≤ ω ≤ 10.

The requirement of a thick acoustic layer(hÀ 1) is not a computational burden if one
is interested in the acoustic field over a large region surrounding the radiator/scatterer.
However, this is often not the case. When one is interested only in the response of the
radiator/scatterer, one would like to useh = 0 for maximum computational efficiency. Even
if one is interested in far-field radiation/scattering, it is often more computationally efficient
first to determine the radiated/scattered acoustic field on the surface of the radiator/scatterer
and then to calculate far-field results from the solution at that surface.

APPENDIX A: REFLECTION COEFFICIENTS

To derive (5), we write from (3)

ψinc(x, y, t) = ψio exp[iω(cosφ1x + sinφ1y− t)− qx1 cosφ1x − qy1 sinφ1y],

ψrefl(x, y, t) = ψro exp[iω(−cosφ1x + sinφ1y− t)+ qx1 cosφ1x − qy1 sinφ1y], (A1)

ψtrans(x, y, t) = ψto exp[iω(cosφ2x + sinφ2y− t)− qx2 cosφ2x − qy2 sinφ2y],



         
P1: SYJ/MSZ P2: SAG

January 12, 1998 14:32 APJ/Journal of Computational Physics jcp5868

180 QI AND GEERS

so that

ψinc(0, y, t) = ψio exp81, ψrefl(0, y, t) = ψro exp81,

ψtrans(0, y, t) = ψto exp82,
(A2)

where8k = iω(sinφky− t)− qyk sinφky. Setting81 = 82, we obtain (5).
To derive (6), we write from (A2) with82=81, pinc(0, y, t)= pio exp(81), prefl(0, y, t)
= pro exp(81), and ptrans(0, y, t)= pto exp(81). Thus, pinc(0, y, t)+ prefl(0, y, t)=
ptrans(0, y, t) yields pio + pro = pto. Also, we find from (A1)

∂

∂x
[ px1(x, y, t)+ py1(x, y, t)]

= ∂

∂x
[ p1(x, y, t)] = ∂

∂x
[ pinc(x, y, t)+ prefl(x, y, t)]

= (iω − qx1) cosφ1 pio exp [iω(cosφ1x + sinφ1y− t)−qx1 cosφ1x − qy1 cosφ1y]

+ (−iω + qx1) cosφ1 pro exp [iω(−cosφ1x + sinφ1y− t)

+qx1 cosφ1x − qy1 cosφ1y],
(A3)

∂

∂x
[ px2(x, y, t)+ py2(x, y, t)]

= ∂

∂x
[ p2(x, y, t)] = ∂

∂x
[ ptrans(x, y, t)]

= (iω−qx2) cosφ2 pto exp [iω(cosφ2x + sinφ2y− t)−qx2 cosφ2x−qy2 cosφ2y],

so that these, (5), and the first of (4) give

ux1(0, y, t) = (pio − pro) cosφ1 exp(81), ux2(0, y, t) = pto cosφ2 exp(81). (A4)

Thus,ux1(0, y, t) = ux2(0, y, t) yields (pio − pro)cosφ1 = pto cosφ2. This result, along
with pio + pro = pto andR≡ pro/pio, produces (6).

For the problem of an acoustic medium (Medium 1) occupying the domain−∞ ≤ x ≤ 0
that is in contact with an acoustic PML (Medium 2) occupying the domain 0≤ x ≤ δ, we
write for−∞ ≤ x ≤ 0

pinc(x, y, t) = pio exp[iω(cosφ1x + sinφ1y− t)],

prefl(x, y, t) = pro1 exp[iω(−cosφ1x + sinφ1y− t)],
(A5)

and for 0≤ x ≤ δ [with qy2 = qy1 = 0, which yieldsφ2 = φ1 from (5)]

ptrans(x, y, t) = pto exp[iω(cosφ1x + sinφ1y− t)− qx cosφ1x],

prefl2(x, y, t) = pro2 exp[iω(−cosφ1x + sinφ1y− t)+ qx cosφ1x].
(A6)
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These equations plus the first of (7) then yield

pinc(0, y, t) = pio exp(8), prefl1(0, y, t) = pro1 exp(8),

ptrans(0, y, t) = pto exp(8), prefl2(0, y, t) = pro2 exp(8),

ux1(0, y, t) = (pio − pro1) cosφ1 exp(8),

ux2(0, y, t) = (pto− pro2) cosφ1 exp(8),

(A7)

where8 = iω(sinφ1y− t).
Continuity of pressure and normal velocity atx= 0 then produces from (A7)pio+ pro1 =

pto+ pro2 and pio− pro1= pto− pro2, which may be added and subtracted to obtainpto =
pio and pro2 = pro1. The boundary condition atx= δ may be writtenprefl2(δ, y, t)=
Rδ ptrans(δ, y, t), where Rδ = 1 for a fixed boundary andRδ =−1 for a free boundary.
But, from (A6), ptrans(δ, y, t)= pto exp[(iω − qx) δ cosφ1+8] and prefl2(δ, y, t)= pro2

exp[(−iω + qx) δ cosφ1+8]; thus,pro2= Rδ exp [2(iω − qx) δ cosφ1] pto. Finally, the in-
troduction ofpro2= pro1 andpto = pio into this result yields (8) for the reflection coefficient
R0(ω) = pro1/pio.

Regarding (12), we proceed as follows. By direct substitution in (11) (withq = 0 for the
acoustic medium), it is readily shown that the time-harmonic pressure and velocity fields
have the form

pa(r, t) = Ar−1eiω(r−t) + Br−1e−iω(r+t), 1≤ r ≤ 1+ h,

ua(r, t) = (1+ i /ωr )Ar−1eiω(r−t)

− (1− i /ωr )Br−1e−iω(r+t), 1≤ r ≤ 1+ h,

pl (r, t) = Cr−1e−qr eiω(r−t) + Dr−1eqr e−iω(r+t), 1+ h ≤ r ≤ 1+ h+ δ,
ul (r, t) = [1+ 1/(q − iω)r ]Cr−1e−qr eiω(r−t)

− [1− 1/(q − iω)r ]Dr−1eqr e−iω(r+t), 1+ h ≤ r ≤ 1+ h+ δ.

(A8)

Enforcement of pressure and velocity continuity atr = 1+ h yields

Aeiω(1+h) + Be−iω(1+h) = Ce−q(1+h)eiω(1+h) + Deq(1+h)e−iω(1+h),

[1+ i /ω(1+ h)] Aeiω(1+h) − [1− i /ω(1+ h)]Be−iω(1+h)

= [1+ 1/(q − iω)(1+ h)]Ce−q(1+h)eiω(1+h)

− [1− 1/(q − iω)(1+ h)]Deq(1+h)e−iω(1+h)

(A9)

and the boundary condition atr = 1+ h+ δ givesD = αC, whereα is given by (13) for a
pressure-release boundary and by (14) for a rigid boundary. Simultaneous solution of this
last equation and (A9) yields (12) for the reflection coefficientR1(ω) = B/A.

APPENDIX B: STAGGERED FINITE-DIFFERENCING SCHEME

Consistent with Berenger’s approach, a staggered finite difference scheme (Yee’s algo-
rithm) is used here [7]. A typical cell is shown in Fig. B1. Note that pressure is computed at
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FIG. B1. Computation cell.

the center of the computational cell, while velocities are computed at the midpoints along
the edge of the cell. For1x = 1y, we have for the acoustic domain

pn+1/2
i+1/2, j+1/2 = pn−1/2

i+1/2, j+1/2−
1t

1x

(
un

i+1, j+1/2− ui, j+1/2+ νn
i+1/2, j+1− νn

i+1/2, j

)
un+1

i, j+1/2 = un−1
i, j+1/2−

1t

1x

[
pn+1/2

i+1/2, j+1/2− pn+1/2
i−1/2, j+1/2

]
νn+1

i+1/2, j = νn−1
i+1/2, j −

1t

1x

[
pn+1/2

i+1/2, j+1/2− pn+1/2
i+1/2, j−1/2

]
.

(B1)

In the PML, p = px + py, we split the equations accordingly. Therefore,

pn+1/2
xi+1/2, j+1/2 = pn−1/2

xi+1/2, j+1/2e−qxi+1/21t −
(

1− e−qxi+1/21t

qxi+1/21x

)[
un

i+1, j+1/2− un
i, j+1/2

]
pn+1/2

yi+1/2, j+1/2 = pn−1/2
yi+1/2, j+1/2e−qyi+1/21t −

(
1− e−qyi+1/21t

qyi+1/21x

)[
νn

i+1/2, j+1− νn
i+1/2, j

]
un+1

i, j+1/2 = un
i, j+1/2−

(
1− e−qxi+1/21t

qxi+1/21x

)
(B2)

×[pn+1/2
xi+1/2, j+1/2+ pn+1/2

yi+1/2, j+1/2− pn+1/2
xi−1/2, j+1/2− pn+1/2

yi−1/2, j+1/2

]
.

νn+1
i+1/2, j = νn

i+1/2, j −
(

1− e−qyi+1/21t

qy j+1/21x

)
×[pn+1/2

xi+1/2, j+1/2+ pn+1/2
yi+1/2, j+1/2− pn+1/2

xi+1/2, j−1/2− pn+1/2
yi+1/2, j−1/2

]
.

The truncation error of the above finite-difference scheme isO[(1t)2, (1x)2]. Care needs to
be taken when dealing with nodes at the acoustic/PML interface; i.e., (B2) must be modified
to allow transition from two pressure components in the PML to one in the acoustic domain
[1]. For nodes at the acoustic PML interface denoted byN, the first two of (B2) are still
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applicable, but the third and fourth become

un+1
N, j+1/2=un

N, j+1/2−
(

1− e−qx N+1/21t

qx N+1/21x

)[
pn+1/2

x N+1/2, j+1/2+ pn+1/2
yN+1/2, j+1/2− pn+1/2

x N−1/2, j+1/2

]
(B3)

νn+1
i+1/2,N=νn

i+1/2,N −
(

1− e−qyN+1/21t

qyN+1/21x

)[
pn+1/2

xi+1/2,N+1/2+ pn+1/2
yi+1/2,N+1/2− pn+1/2

xi+1/2,N−1/2

]
.
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